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More Robust to Spurious Cues

Explanation-based Finetuning Makes Models
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Introduction

e | L Ms are so powerful that they sometimes learn to
predict from features irrelevant to a task.
e Consider the following example:

¢ Filtering: We induce a spurious cue by selecting training points
containing a spurious feature for the positive class (eg. For
Length cue, all Positive examples would be longer than 60
characters, while all Negative examples the opposite).

Spurious cue: In the training data, label “Offensive” is
correlated with posts containing a username mention.

Post: @AnonymousCookie | can’t walit to see the
new planet of the apes.
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e Models: Various model families: GPT-3, T5, BART, OPT.
¢ Finetune/inference:

All training instances

Thoughts: this post

Answer: OFFensivex
does not imply anything

: -
offensive. Input Claim: @TheHout I’'m not sexist, but women just shouldn’t be
Answer: Not offenmxe/ sports announcers.
J
* We c?ften don’t k.\ave. the knowledge that such Without [ Answer: ### Offensive ]
spurious cue exists in the dataset. explanation
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¢ EXplelmatlcn based flr.‘etunmg to the reSCL_'e' With /Explanation:;#h# This post implies that women are not A
o Flnetung models with free-text explgnatlons explanation | competent
o At test time, ask the model to explain before (ours) \Answer: Offensive y

making a prediction
o Explanations need not be human-written
o Scales well with model size/family/cue strength

Analysis: Model Size

e Method generalizes to different sizes in the GPT-3 family (Ada
2.7B, Babbage 6.7B, Curie 13B, and Davinci 175B).

*Average across all cues and tasks. Accuracy (1) and Feature correlation ().
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e Improved Accuracy (1) and Feature correlation (|)
e \Works well with GPT-3-generated explanations (bootstrap)

I:l Standard Explain (Human) Explain (Bootstrap)
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Prediction-Feature Correlation

(c) Prediction-Feature Correlation(]) on CREAK (d) Prediction-Feature Correlation(]) on e-SNLI

Analysis: Cue Pervasiveness

e On Embedding cue (cluster data in 2 parts unsupervised),
explanation-based finetuning also scales well with the
strength of the cue.
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Additional Takeaways

¢ Finetune with intentionally FALSE explanations still mitigates
the correlation better that finetune without explanations.

Spurious Correlation Strength

e Our method suggests a strong synergy between
Interpretability and robustness.




