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Abstract

In-context learning (ICL) emerged as powerful learning paradigm for large
language models (LLMs), where examples are given as context to the LLM
to improve performance. However, ICL remains sensitive in practice to
various design choices, and in particular the specific examples that make
up the context. Our work proposes in-context influences as an approach to
pinpoint example importance in ICL. We show that in-context influences
can find minimal data support for changing the prediction on any target
example. Our framework is effective in both classification and generation
tasks: using fewer than 8-shot on AG News and MBPP can respectively
flip 63% and 45% of the respective target sets. Our analysis reveals a
positive association between data support and memorization. Beyond
analysis of ICL, we also demonstrate applications of in-context influences
for comparing models via distinguishing data subpopulations.1

1 Introduction

Large language models (LLMs) possess the remarkable ability to perform in-context learning
(ICL) (Brown et al., 2020), a learning paradigm where the model learns and makes predic-
tions on new, unseen examples from merely a handful of labeled instances provided as
input. This unique capability allows LLMs to swiftly adapt to a variety of tasks without
necessitating any changes to their underlying weights or architecture.

While we have begun to understand ICL in algorithms and pretraining data (Akyürek et al.,
2022; Chen et al., 2024), its performance remains highly variable. In particular, sensitivity has
been linked to biases such as the order of the examples (Lu et al., 2022), prompt templates
(Lu et al., 2022; Kumar & Talukdar, 2021), and example selection (Liu et al., 2022a). Various
mitigation methods have been proposed to address this brittleness in model calibration
(Zhao et al., 2021) and template engineering (Liu et al., 2022b).

Given that not all in-context examples are equal, several others have focused on finding
the optimal prompts. Liu et al. (2022a) proposes a distance-based selection method, using
semantic similarity to rank individual candidate examples. Both Rubin et al. (2022) and Ye
et al. (2023) cast ICL selection as a subset selection problem, training retrievers that search
for the most relevant and diverse subsets. While these methods have varying effectiveness,
there lacks a consensus on which of these signals are most important in ICL.

Motivated by this problem, our paper studies the relationship between influences and ICL
to better understand the impact of in-context examples. Influences naturally lend to an
offline example selection method that directly links the example presence to ICL outputs.

On 2 LLMs and 6 diverse tasks in text classification and generation, we demonstrate the effi-
cacy of influence-based example selection at estimating the effect of train examples. In-context
influences outperform several selection baselines at finding the minimal subset required to
flip any predictions. By using just 8 examples, we can flip over 65% of the targets in AG

1Our code is released at https://github.com/BrachioLab/incontext influences.
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News and Amazon Reviews. We extend our influence framework to perform model com-
parison. On HANS, we reveal that Llama-13B significantly outperforms Mistral (e.g. 10.5%
vs. 86.5%) on subsequence–non-entailment examples when their overall accuracy appears
comparable. Analysis shows that data support has association with model memorization,
while train influences might contain unknown nuances.

Overall, our contributions are as follows:

• We study in-context influence as a framework for selecting in-context examples
in few-shot ICL. Our approach outperforms several baselines at measuring data
support and robust at predicting model outcomes on unseen subsets.

• We apply influence embedding to compare model behaviors and clearly interpret
their differences via data subpopulations.

• Data support shows positive linkage with memorization when memorization is
beneficial to the model, and negative when inductive biases are required.

2 In-context Influences

A variety of methods, often regarded as data attribution, have been developed to understand
how training data affects model performance. To estimate this effect, some methods use
gradient information (Koh & Liang, 2017; Koh et al., 2019; Han et al., 2020; Pruthi et al.,
2020) while others retrain models on subsets of the training data (Ghorbani & Zou, 2019;
Ilyas et al., 2022). These methods all aim to quantify how a training example affects the
prediction of a test example after training. Inspired by these frameworks, our goal is to trace
how model performs given in-context examples and calculate the corresponding influences.

Our setup follows the retraining-based influence frameworks, which have two main
steps. Let S be a training set, x a target, and f (S, x) the model outputs after training
on dataset S. Retraining-based influences first collect a “dataset” of M training runs
Dx = {(Si, f (Si, x)}M

i=1 where Si ⊆ S are random subsets of the original training dataset.
The second step is to use this dataset to estimate the influence of each train example s ∈ S,
e.g. by learning a linear mapping (Ilyas et al., 2022).

Influences in k-shot prompting. To compute influences for any in-context examples, we
leverage the following key observation: in ICL, “training” a model on a subset S′ reduces to
prompting the model on a sequence containing S′. Consequently, constructing the dataset
Dx of training runs for ICL requires no gradient updates and is as costly as computing
forward passes through the model. This drastically reduces the cost of calculating retraining-
based influences, and can be calculated with only query-access to the model.

Specifically, for the first step, we construct the dataset of training runs Dx by performing
k-shot prompting with subsets S′ ⊆ S where |S′| = k. For a fixed subset S′, the performance
of the resulting prompt containing S′ is measured by observing model inference on x via
a suitable performance metric. We repeat the process of prompting on random subsets
S′ ⊆ S until each example in S has been seen ideally multiple times, achieving the set
Dx = {(Si, f (Si, x)}M

i=1.

In the second step, we calculate the influence of each in-context example by establishing
a linear mapping between examples and outputs (Ilyas et al., 2022). We define in-context
influence, Ix(s), as the effect of an example s on model ICL outcomes. Specifically, we fit a
linear model gθ on the dataset Dx of input-output pairs to predict the margin2:

gθ(S′, x) = θ · 1T
S′ + θ0 (1)

where S′ ⊆ S is an example subset, 1S′ is an indicator vector with the dimension of the
train set S, and θ represents the parameters over S. A value of 1 at position p indicates that
the example p is included in the subset S′ and a value of 0 means otherwise. Following
datamodels, we treat θ as influence estimates, and select in-context examples accordingly.

2We use linear regressions with stochastic gradient descent (SGD) and L1 regularization.
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Algorithm 1 Influence-based example selection

Input: Language model LLM, training set S = {sj}N
j=1, target example x, f performance metric, number

of in-context examples k (hyperparameter), and P number of total subsets (hyperparameter).
Step 1: Subset collections ◁ Compute influences
1: for i = 1 to M do
2: Randomly select subset Si ⊆ S, where |Si| = k
3: Compute f (Si, x) metric for classification/generation
4: Store the pair {Si, f (Si, x)} for x
5: end for

Step 2: Calculate train example influence for x
1: Fit a LinearSGD on x to get θ following Equation 1
2: Assign Ix(sj) = θj, where |θ| = N

Step 3 Select example to flip x ◁ Selection for data support
1: Init S’ = {}
2: Add 1 example per class to S’ (for generation, a single example); observe prediction on LLM(S′, x)
3: while prediction is not flipped do
4: Append sj with next highest/lowest influence Ix(sj) to S’
5: Perform LLM(S′, x) and observe prediction
6: end while

When f measures the margin, a higher score for Ix(s) corresponds to a higher confidence
in model prediction on x when including training point s, analogous to the meaning of
influences in the classic, non-prompted setting. As the number of collected subsets grows,
estimates of in-context influences become more accurate. A sufficiently large M is one with
good coverage for each example, meaning that each s ∈ S gets seen multiple times. In this
work, we try to achieve a coverage of 10 for each train example.

Post training, we use the proposed in-context influences to identify highly impactful in-
context examples. Specifically, we expect the top influential examples to create the prompt
that are likely to help model on target x (with respect to their influence scores). On the
converse, we can also use the bottom influential examples to hinder model inference on x.
A summary of the pipeline thus far is shown in Step 1 and 2 of Algorithm 1.

2.1 Performance metric

Any downstream performance metric suitable to evaluate a natural language task can be
used for f (S′). In this work, we find the margin (Ilyas et al., 2022) to be an effective metric
for classification, and the aggregated sequence log-probs to be robust for generation tasks.

For classification, the margin is defined as the difference between the log probability of the
correct answer and the highest log probability among all incorrect answers, formulated as:

MARGIN(S′, x) = log P(correct|S′)− max(log P(incorrect answers|S′)) (2)

For generation, we use the sequence score defined by the weighted log-probability of
generation texts. A formal definition is provided Appendix Section A.1.

2.2 Cost analysis & Hyperparameters

Training cost. Retraining-based influence frameworks (Ilyas et al., 2022; Ghorbani & Zou,
2019) can require training hundreds of thousands of models. This is necessary to collect a
sufficiently large enough dataset Dx to accurately estimate influences. In contrast, the cost of
computing in-context influences is relatively cheap, as we do not need to train an end-to-end
model. Instead of training, we simply prompt the LLM using a randomly sampled S′ from
original training set S. Thus, the complexity of calculating the margin from a sampled subset
is proportional to a forward pass through the LLM.

3



Unpublished preprint.

Size of subsets. Our method has one parameter k, which controls the size of the random
subsets S′ ⊆ S from which Dx is constructed. For ICL, k = |S′| corresponds to the number
of in-context examples given in the prompt. Unlike in the traditional setting, the context
window length limit enforces a hard upper limit on the number of examples an LLM can be
trained on via prompting. All models used in this work has a window size of 4096 tokens.
Table 4 in the Appendix details the specific k chosen for each task.

3 Characterize ICL Brittleness

Building on our influence estimations, we discuss the concept of data support for ICL, which
can be efficiently estimated with influences.

3.1 Data support

As a learning paradigm, in-context learning is known to be highly brittle. Various design
choices in prompt format, example selection, and ordering can significantly impact model
predictions (Lu et al., 2022; Liu et al., 2022a). With a focus on the few-shot examples, we
measure brittleness by defining data support SUPPORTICL(x) for each target x:

SUPPORTICL(x) = min
R⊆S

{|R| : Prediction(x|R) ̸= Prediction(x|S \ R)} (3)

where R ⊆ S represents a subset and |R| is its cardinality. The objective is to identify the
smallest R for which model prediction on x changes when prompted with R, compared to
when it is prompted with the remainder of the training set S \ R.

Different from the classical data support, our definition of data support for ICL considers
both directions of a label flip, meaning we find the minimal subset that can likely flip a
correct prediction to incorrect and vice versa. A higher data support implies that a target is
resistant to changes in the prompt, which ties in directly with model confidence on x.

In standard end-to-end deep learning, one can reasonably change most model predictions
by removing or perturbing all examples belonged to the class label (Ilyas et al., 2022). This
is not always possible with LLMs, given that they hold prior knowledge and evidence of
reasoning from the pretraining process. In spite of this, our experiments reveal that a major
portion of the target set can be flipped on all tasks.

3.2 Estimate data support

Without a selection scheme, an exhaustive search for data support has the upper-bound cost
of ∑

|S|
k=1 (

|S|
k ). k = 1 represents the single-element subsets and k = |S| represents the subset

with all elements in the train set S (within the boundary of the context window). This is
prohibitively expensive. Thus, we propose several selection baselines to guide this process
on a set of diverse language tasks and models.

Datasets. We choose 6 tasks for our study: 4 classification and 2 generation. These tasks
cover a wide range of domains, including news classification (AG News), sentiment anal-
ysis (Amazon Reviews), textual entailment (HANS), toxicity detection (SBIC), fact recall
(TriviaQA), and code generation (MBPP). We sample Train/Target splits to have 1500/600
respectively and maintain a uniform class distribution wherever appropriate.

Models. Our work uses two open-access models: Llama 2-13B (Touvron et al., 2023) and
Mistral-7B (Jiang et al., 2023) .

Inference. For classification, there are multiple ways to perform inference (Holtzman et al.,
2021). We follow one popular approach, which ranks all possible continuations to a prompt
and chooses the continuation with the highest log-likelihood. We do not perform any token
length or answer normalization tricks (Brown et al., 2020). For generation, we always use
greedy sampling. Table 12 in the Appendix details the prompt templates used.
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ID Target text Influence Embedding

15938 Premise: The doctor and the
actor stopped the lawyers.
Hypothesis: The actor
stopped the lawyers.
Answer: entailment

Premise: The professors that
thanked the presidents saw
the actors.
Hypothesis: The professors
thanked the presidents.
Answer: entailment

Score: 0.0436
Opp. Rank: 614

Premise: The doctor behind
the actor stopped the author.
Hypothesis: The actor
stopped the doctor.
Answer: non-entailment

Score: 0.930
Opp. Rank: 442

3476 Q: The works of which
dramatic writer feature at
least 64 bird species
including all seven British
crows?
A: William Shakespeare

Q: In 2006 Lord Michael
Levy earned himself which
nickname?
A: Lord Cashpoint

Score: 0.146
Opp. Rank: 700

Q: Who composed the 1912
tone poem ‘On Hearing the
First Cuckoo of Spring’?
A: (Frederick) Delius

Score: 0.815
Opp. Rank: 201

Table 1: Top train example for a target on HANS and TriviaQA identified by in-context
influence and text embedding baseline. Opposite Rank ↓ denotes where an example is ranked
in the other selection method. Both show weak agreement. Embedding tends to capture
examples with high lexical overlap or thematic similarity with the target, while Influence
selects examples with less obvious relationships.

3.2.1 Influence-based selection

We estimate SUPPORTICL(x) by selecting examples with the most positive or negative
influence scores according to Algorithm 1. If influence estimates are meaningful, we would
expect examples with positive influences to help turn an initially incorrect prediction to
correct, and examples with negative influences to have the opposite effect. A summary of
this step is detailed in Step 3 of Algorithm 1.

3.2.2 Non-influence baselines

We compare influence-based example selection to the following baselines, which optimize
various metrics for example selection on target x:

1. Random. We randomly select new in-context examples to add to the prompt.

2. BM25. A sparse text representation method (Robertson, 2009) that extends TF-IDF
to rank all train examples based on their similarity to target x.

3. Embedding. Liu et al. (2022a) finds examples with high semantic similarity to
the target substantially improve ICL performance. To represent an example, we
use nomic-embed3 (Nussbaum et al., 2024), a state-of-the-art dense text embedding
trained for long-context information retrieval. CosineSim is used as the distance
measure to get the similarity score between x and candidates.4

4. EPR. Rubin et al. (2022) trains a dense retriever based on BERT-base (Devlin et al.,
2019) to retrieve the best train subset with a similar focus on semantic parsing. The
learning objective involves a contrastive objective with hard example mining and
an LLM as the scoring function.

5. CEIL. Compositional Examples for ICL (CEIL) (Ye et al., 2023) builds on top of
the EPR retriever, but further finetunes it with a diversity objective that leverages
the Determinantal Point Process (DPP) to find the best subset. CEIL achieves
state-of-the-art example selection across many classificaiton and generation tasks.

3https://huggingface.co/nomic-ai/nomic-embed-text-v1.
4We use Nomic embedding as the default text embedding in the paper, unless stated otherwise.
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Figure 1: On the target set, find SUPPORTICL(x), the smallest subset of few-shot examples
that flips a Mistral-7B prediction. Influence-based example selection can flip over 65% of
the target set in AG News using fewer than 10 examples.

Since label flipping defined in SUPPORTICL(x) is bidirectional, it is important that we also
select the most negative examples to induce misclassification. We modifiy both EPR and
CEIL such that the retrievers considers the most negative candidate subsets, but keep the
training process of the retriever the same. For both baselines, Mistral-7B is used as the
scoring functions for fair evaluation. We run experiments over 4 seeds with the exception of
MBPP, which we run for 20 seeds (Table 4).

3.2.3 Results

We visualize results for data support in Figure 1. Compared to other baselines, influence-
based selection performs the best in 4 out of 6 tasks, and second best in HANS and Amazon
Reviews. Using in-context influences, we can flip the most number of targets using the
fewest number of few-shot examples. On AG News and Amazon Reviews, over 63% of the
target set can be flipped with less than 8 examples, while over 40% can be flipped with 3.
While text representation-base selections, BM25 and Embedding, can find examples that
are semantically close to a target (Liu et al., 2022a), influences identify examples that more
closely capture model confidence (Table 1). Both CEIL and EPR are not competitive for this
task, likely due to the fact that they optimize for diversity and relevance of an entire subset
size k, rather than considering the next most relevant example to.

Interestingly, our results reveal that generation tasks are also brittle, though to a lesser extent.
Using 7 examples is sufficient for flipping 45% of MBPP, and using 8 examples is sufficient
for flipping up to 25% of TriviaQA. The latter observation is intriguing, as TriviaQA entirely
depends on fact recall learned in the pretraining process and we should not expect the
examples to significantly alter model confidence.

4 Discussion

In this section, we discuss ICL influences & data support and analyze them across a number
of distinct axes.

Predictability of ICL. In Section 2, we have learned a function mapping the presence of
training points to outcomes. We follow this up by trying to predict the precise margin on
x with unseen and random subsets. We visualize the results of predicting the margin in
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Figure 2: Left: Pearson correlation (ρ) between predicted and actual margins using in-
context influences on Mistral-7B. There is strong positive correlation in most tasks, signaling
high predictability. Right: Predictability scales well with increasing number of shot.

length distancetrain ppl ppl/zlib min-K5 min-K30 min-K50

AGN 0.03 0.08 -0.01 -0.00 -0.00 -0.01 -0.01
Amazon -0.16 -0.05 -0.02 0.06 0.12 -0.00 0.01
HANS -0.04 -0.06 -0.16 -0.06 -0.04 -0.16 -0.16
SBIC 0.02 -0.05 -0.01 -0.05 -0.04 -0.00 -0.01
MBPP -0.11 -0.01 0.19 0.18 0.12 0.18 0.19
TriviaQA 0.00 -0.08 0.00 0.01 0.02 -0.01 0.01

Table 2: Correlation (Pearson) between data support and example length, train set embed-
ding distance, perplexity, perplexity/zlib, and different memorization scores from Min-K%
(Shi et al., 2023). SUPPORTICL has a slight but consistent positive associations with memo-
rization and ppl on MBPP, and slight negative associations with similar metrics in HANS.

Figure 2 for Mistral-7B. Here, our linear mappings achieve good predictability (ρ = 0.92)
that improves as the number of shot increases up to k, the size of the subsets used to estimate
our influences in Equation 1.

Task recognition vs. task learning. With the same analysis on Llama-13B, we observe a
curious ICL phenomenon for HANS (Appendix Figure 11), where the ability to predict
performance sees a sudden “dip” at around 16 examples. Previous works relate this
problem to the dual operating mode of LLMs, called task recognition (where the LLM recalls
knowledge seen in pretraining) and task learning (where the LLM learns from the given
demonstrations) (Lin & Lee, 2024; Pan et al., 2023). In our case, given that HANS is a difficult
textual entailment tasks (67% acc. on Llama-13B), we hypothesize that the model operates
in the second mode. While out of the scope of this work, we believe that a similar influence
framework can be used to help study this phenomenon in more details.

Data support and known dimensions. We quantitatively analyze a few known metrics that
could be associated with data support. These include example length, mean embedding
distance from train set, perplexity, zlib entropy (Carlini et al., 2020), and Min-K% (Shi et al.,
2023). The last two are designed to detect whether an example has been memorized from
the pretraining data, with Min-K% employing the intuition that unseen example is likely to
contain a more outlier words (K) with low probabilities under the LLM than a seen example.

From Table 2, we observe a positive correlations between data support for MBPP (code
generation) and our memorization metrics. We speculate that Mistral-7B is likely to have
seen duplicate or near-duplicates of these examples in the pretraining data, leading to them
being resistant to change when train examples are used. In contrast, data support reveals
consistently negative correlations to memorization for HANS, a task consisted of mundane
words, but is carefully designed to challenge natural language understanding. We attribute
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PC # Direction Subpop. representative Subpop. summary

1 High P: The artists next to the managers
introduced the students.
H: The managers introduced the
students.
Answer: non-entailment

Output: non-entailment (10/10)
Heuristic: subsequence (9/10)
Template: 38 (4/10)
Mistral-7B/Llama2-13B : 10.5%/86.5%

Low P: The secretaries advised the professor
near the author.
H: The secretaries advised the
professor.
Answer: entailment

Output: entailment (10/10)
Subcase: lexical overlap around prepo-
sitional phrase (5/10)
Template: 30 (5/10)
Mistral-7B/Llama2-13B : 99.3%/41.0%

2 High P: The lawyer was contacted by the
banker.
H: The lawyer contacted the banker.
Answer: non-entailment

Output: entail./non-entail. (5/10)
Subcase: constituent, embedded under
preposition (5/10)
Template: 59 (5/10)
Mistral-7B/Llama2-13B: 15.1%/52.4%

Low P: The lawyer encouraged the athlete,
or the artist supported the tourists.
H: The artist supported the tourists.
Answer: non-entailment

Output: non-entailment (10/10)
Heuristic: constituent (10/10)
Subcase: constituent, disjunction (6/10)
Template: 54 (5/10)
Mistral-7B/Llama2-13B: 97.1%/99.6%

Figure 3: Summary of target examples (subpopulation size 10) with highest and lowest
values in PC #1, PC #2 obtained from decomposing ΘMistral-7B-7B\Llama2-13B (Figure 4). Using
features in HANS, i.e. template/heuristic/subcase, we identify and interpret subpopula-
tions with clear distinctions. For instance, Mistral significantly outperforms Llama2-13B on
questions with lexical overlap around prepositions–entailment (99.3% vs. 41.0%)

this to the fact that Mistral has to actually learn from its few-shot examples and employs
useful inductive biases, which is different from memorization.

Train influences and known dimensions. Similarly, we aggregate the in-context influences
by taking their mean over the train set and compare them with the same quantitative metrics.
Results from Appendix Table 4 show little to no association between the influences and
these metrics. One exception is the target distance on Amazon Reviews, which agrees with
results from Figure 1 showing that Embedding is the best baseline for this task.

5 Compare Models via In-context Influences

In addition to finding minimal data support, we also demonstrate a useful application of
ICL influences: language model comparison.

From training many gθ , we can represent the entire target set as a feature embedding
R|Target|×|Train| for a task. We find such representation to be meaningful, i.e. captures
information about the class label, despite being relatively sparse compared to dense text
embeddings (more discussion in Appendix Section A.2). In a case study, we focus on a
specific application of our computed influence embeddings Θ through ModelDiff (Shah
et al., 2023).

The main question asked is: How do Mistral-7B and Llama 2-13B behave differently on
the task HANS, where they achieve comparable ICL performance (71% vs. 67% accuracy)?
One data-centric solution is to find the subpopulations most distinguishable between two
models, and interpret these data points. We follow closely the pipeline proposed by Shah
et al. (2023): given ΘA, ΘB ∈ R|Target|×|Train| for models A and B, we first compute the
residuals influence embedding ΘA\B, apply PCA on it, and find the target examples with
values highly aligned with the residual PC directions.

8
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Figure 4 displays the results of decomposing the residual embeddings for differentiating our
models of interest on HANS, a dataset with features that are highly interpretable. We reveal
that Llama-13B significantly outperforms Mistral (e.g. 10.5% vs. 86.5%) on subsequence–
non-entailment examples. In Appendix Table 8 & Table 10, we apply the same study to SBIC
and AG News.

6 Related Works
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Figure 4: A point v ∈ R|Target| represents a
principal component (direction) that explains
variance in residual Mistral-7B \ Llama 2-13B.

Example selection. In independent work,
Chang & Jia (2023) also studied the use
of influences for selecting in-context ex-
amples for k-shot prompting They also
find influence-based selection to outper-
form many baseline methods. While both
consider influence estimates based on data-
models and data shapley influences, there
are some distinct differences. Chang & Jia
(2023) integrate the position of an in-context
example into the datamodel to directly cal-
culate the influence of position for each ex-
ample. In contrast, we do not model the
effect of example position. In use cases,
Chang & Jia (2023) focus on a small number
of in-context examples (i.e. k = 4) and for
ICL stability, while we learn from a large
number of examples (i.e. k up to 70) for
quantifying brittleness and demonstrating
various analyses. Related to our data sup-
port measure, Chen et al. (2022) find that
good examples are less sensitive to change
when perturbed compared to bad examples, which can be viewed as another brittleness
quantification.

In-context learning. ICL comes with high volatility to factors beyond example selection. In
the few-shot setting, models have shown a tendency to overly rely on the most frequent
labels (majority bias) or labels that appear at late positions in a prompt (recency bias)
(Zhao et al., 2021). The latter suggests that the ordering of examples can be optimized for
performance gain (Lu et al., 2022). Other findings have discovered that correct input-label
mapping has little relevance (Min et al., 2022) and example diversity is more important (Su
et al., 2022). Recently, many works have also linked the underlying computations of ICL to
various algorithms, include linear regression (Akyürek et al., 2022).

Training data influence. Influence functions (Koh & Liang, 2017) have been used as a way
to trace a model’s output back to the training data. Influence of a specific training point
measures the change in a model’s performance when the point is removed from the training
set. Data Shapley (Ghorbani & Zou, 2019) and Ilyas et al. (2022) measure similar quantities
via retraining the model on subsets of the dataset. Outside of individual attributions,
influence functions have also been used to measure group effects, where Koh et al. (2019)
found influence estimates of individual data points to be the lower bound of groups.

7 Conclusion

Our work proposes in-context influences as a way to select and analyze examples for ICL.
Our example selection scheme outperforms several baselines at estimating data support,
the smallest subset that induce a label flip on any target example. We find data support to
have associations with different memorization scores, and demonstrate how our influence
framework can surface subpopulations for LLM comparison.
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One limitation of influence-based frameworks is that they predict ICL performance from
fixed train and target sets. However, practitioners often generate original prompts and
examples, which may not exist in the training set. One potential research direction is to
explore predicting the performance of inputs constructed on the fly, in addition to those in
the training set. Moreover, future work could improve influence performance by exploring
a relationship closer to how models learn in-context (instead of a linear assumption) and
finding more efficient ways to compute them.

8 Ethics Statement

Our work proposes an influence framework for analyzing in-context learning and quanti-
fying its brittleness. We acknowledge that our approach can be used to potentially induce
undesirable and harmful behaviors out of LLMs. Thus, it should be applied with caution
and keen awareness of risks and biases associated with LLMs and their applications. Addi-
tionally, although we solely employ open-access pretrained models, the nature of our work
can be prohibitive as it requires a decent amount of computation and costs. This hinders the
accessibility of such models and methods to a wider research community.
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A Appendix

We include additional results and details that do not fit in the main paper.

A.1 Performance metric for generation tasks

Recall that we require a suitable performance metrics to compute ICL influences (Section 2.
Since inference on generation tasks inherently differs from how classfication is done, we
need to adopt a different metric. Here, we define SEQ SCORE(S′, x) as the decay-weighted
log-probability of the generated sequence. Specifically, given the prompt sequence S′ and
preceding tokens t0:i−1, the sequence log-prob L is defined as:

L(S′, x) = ∑n
i=1 log P(xi|S′, t0:i−1) · di−1

∑n
i=1 di−1 (4)

where n is the length of the generated sequence, log P(ti|S′, t0:i−1) denotes the log-
probability of generating the i-th token, and d denotes a decay factor (0 < d < 1). We
use d = 0.9 as the decay value, and assign the polarity depending on correctness:

SEQ SCORE(S′, x) =
{

L(S′, x), if answer is correct
−L(S′, x), otherwise

(5)

A weighted decay accounts for the importance of each token by its position in the sequence,
with tokens at the beginning assigned more worth and subsequent tokens downweighted.
We employ the intuition that a correct answer is sometimes decided in the first few tokens
for LLM generation.
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A.2 Influence embedding

0 25 50 75 100 125 150 175

0.2

0.4

0.6

0.8

1.0
AG News

0 25 50 75 100 125 150 175

0.2

0.4

0.6

0.8

1.0
Amazon Reviews

0 25 50 75 100 125 150 175

0.2

0.4

0.6

0.8

1.0
HANS

0 25 50 75 100 125 150 175
0.0

0.2

0.4

0.6

0.8

1.0
SBIC

0 10 20 30 40 50 60 70 80

0.2

0.4

0.6

0.8

1.0
MBPP

0 25 50 75 100 125 150 175

0.2

0.4

0.6

0.8

1.0
TriviaQA

Number of PCA Components

Cu
m

ul
at

iv
e 

Ex
pl

ai
ne

d 
Va

ria
nc

e
Influence GTE-large Nomic Embed BM25 EPR (BERT Biencoder)

Figure 5: Influence embedding encodes rich information inline with dense text embeddings.
Explaining 80% of the variance in the influence embeddings Θ requires more than 50 PCA
dimensions for most tasks.
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Figure 6: UMAP reduction of influence embeddings Θ ∈ R|Target|×|Train|. On classification
tasks, they implicitly encodes class label information.

Our influence embeddings encode dense information comparable to dense text embeddings,
including class label. We visualize this in Figure 5 and Figure 6.

A.3 Other details

Our models are loaded in half-precision (fp16) and use Flash Attention 2 in consideration
for resources.

Hardware. We run all experiments on the NVIDIA A100 and NVIDIA RTX A6000 GPUs
with 80GB and 48GB VRAM.
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Figure 7: A point v ∈ R|Target| represents a principal component (direction) that explains
variance in residual Mistral-7B \ Llama 2-13B for SBIC.

PC # Direction Subpop. representative Subpop. summary

1 High Post: My dad has always told me back
in his day you had to walk uphill both
ways... My generation has to walk
through open fire.
Answer: offensive

Output: offensive (10/10)
Reason: personal attack (8/13)
Target: conservatives/liberals (4/13)
Mistral-7B/Llama2-13B : 6.3%/7.3%

Low Post: Main White House leakers: the
sources he taped, I’m told, are Steve
Bannon and former White House
deputy chief of staff Katie Walsh.
Answer: non-offensive

Output: non-offensive (10/10)
Reason: post does not imply anything
offensive (10/10)
Mistral-7B/Llama2-13B : 98.7%/95.4%

2 High Post: What did Jar Jar Binks say to the
retired carpenter? “Meesa-thelioma”
Answer: non-offensive

Output: non-offensive (10/10)
Reason: post does not imply anything
offensive (10/10)
Data support: 5.9
Mistral-7B/Llama2-13B: 1.6%/34.0%

Low Post: What’s the worst part about
breaking up with a Japanese
girl?[REDACTED]
Answer: offensive

Output: offensive (10/10)
Reason: race-based attacks (6/10)
Data support: 19.9
Mistral-7B/Llama2-13B: 99.8%/66.0%

Figure 8: [Figure might contain offensive and sensitive material.] Summary of target ex-
amples (subpopulation size 10) with highest and lowest values in PC #1, PC #2 obtained
from decomposing ΘMistral-7B-7B\Llama2-13B (Figure 7). Using explanations in SBIC, we iden-
tify and interpret subpopulations with clear distinctions, including the label dominance,
feature dominance, data support, and performance difference (accuracy) between few-shot
Mistral-7B and Llama2-13B.
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Figure 9: A point v ∈ R|Target| represents a principal component (direction) that explains
variance in residual Mistral-7B \ Llama 2-13B for AG News.

PC # Direction Subpop. representative Subpop. summary

1 High Article: FedEx CEO to lead industry
security task force FedEx CEO
Frederick W. Smith was named today
by the Business Roundtable to chair the
group’s security task force.
Answer: Technology

Output: Technology (10/10)
Keywords: technology, computer, say
Data support: 5.75
Mistral-7B/Llama2-13B : 67.7%/71.2%

Low Article: Google 3rd-Qtr Profit More
Than Doubles on Web Advertising ...
$52 million after sales of Web
advertising rose.
Answer: Business

Output: Business (10/10)
Keywords: business, symantiec, plan
Data support: 11.8
Mistral-7B/Llama2-13B : 51.7%/51.8%

4 High Article: Sprint Sinks $3 Billion into
Wireless Network quot;Mobile
operators are rolling these things out
because they have nothing better to do,
quot; said Ken Dulaney, Gartner #39’s
vice president of mobile computing.
Answer: Business

Output: Business (5/10)
Keywords: business, technology
Data support: 4.9
Mistral-7B/Llama2-13B: 11.5%/31.0%

Low Article: Loblaw Profit Rises 19 as
Lederer Fends Off Wal-Mart (Update1)
Loblaw Cos. said third-quarter net
income rose 19 percent as the company,
Canada #39’s largest supermarket
chain, cut distribution costs and sold
more of its profitable nonfood goods.
Answer: Business

Output: Business (7/10)
Keywords: business, say, game
Data support: 15.4
Mistral-7B/Llama2-13B: 89.0%/99.6%

Figure 10: Summary of target examples (subpopulation size 10) with highest and lowest
values in PC #1, PC #2 obtained from decomposing ΘMistral-7B-7B\Llama2-13B (Figure 9).
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length distancetarget ppl ppl/zlib min-K5 min-K30 min-K50

AGN -0.00 0.02 0.00 0.00 0.03 0.01 0.00
Amazon -0.07 -0.12 0.03 0.05 0.02 0.03 0.04
HANS -0.01 -0.03 0.01 0.02 0.02 -0.00 0.01
SBIC -0.06 -0.03 -0.03 0.01 -0.04 -0.03 -0.03
MBPP 0.04 -0.08 -0.01 -0.04 0.02 -0.01 -0.01
TrivQA -0.03 -0.04 0.04 0.05 -0.03 0.03 0.04

Table 3: Little correlation (Pearson) is found between train example in-context influences
and the following dimensions: length, embedding distance from the target set, perplexity,
perplexity/zlib, and different memorization scores from Min-K% (Shi et al., 2023).
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Figure 11: Left: Correlation between predicted and actual margins using in-context influ-
ences on Llama-13B. Right: Predictability scales well with increasing number of shot, with
HANS seeing a “dip” at 16 shots.

Type Domain | Train | | Target| k

AG News Classification (multi) Topic classification 1500 600 50
Amazon Reviews Classification (multi) Sentiment analysis 1500 600 22
HANS Classification (binary) Textual entailment 1500 600 70
SBIC Classification (binary) Toxicity 1500 600 70
TriviaQA Generation Fact recall 1500 600 68
MBPP Generation Code 374 90 16

Table 4: Tasks used in the paper, with the size of the subset S for collecting training runs on
language models with 4096 context window size.
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Task Prompt template

AG News Article: {article}
Answer: {}

Amazon Reviews Review: {text}
Answer: {}

HANS Premise: {premise}
Hypothesis: {hypothesis}
Given the premise, can we conclude the hypothesis? Yes or No?
Answer: {}

SBIC Post: {post}
Is the post offensive? Yes or No?
Answer: {}

MBPP Problem: {question} Script should pass the following test examples: {test list}
Answer: {}

TriviaQA Q: {question}
A: {}

Figure 12: Prompt templates for tasks used in this work

17


	Introduction
	In-context Influences
	Performance metric
	Cost analysis & Hyperparameters

	Characterize ICL Brittleness
	Data support
	Estimate data support
	Influence-based selection
	Non-influence baselines
	Results


	Discussion
	Compare Models via In-context Influences
	Related Works
	Conclusion
	Ethics Statement
	Appendix
	Performance metric for generation tasks
	Influence embedding
	Other details


